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a b s t r a c t

A simply supported laminated beam bonded or embedded with a piezoelectric layer,

which acts as sensor/actuator, is investigated using the state-space method. Linear

spring-like constitutive relations are employed to model the behavior of interfacial

bonding defects. The imperfect bonding between the host laminate and the piezo-

electric transducer is also taken into account. Numerical results show that the electro-

mechanical impedance (EMI) signatures extracted from the piezoelectric layer are very

sensitive to the bonding imperfection of composite laminates. The covariance of the

simulated data, which is a non-parametric damage index, is also employed to identify

the severity of bonding imperfection quantitatively.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Because of the excellent mechanical properties, low density and easy of shaping, laminated composites have been
widely used in aerospace engineering, civil engineering, mechanical and even bioengineering [1]. Their integrity, especially
in the interface region, is a very important factor in their life-time. Unfortunately, from a strictly physical point of view, the
existence of a perfect interfacial bond in a real laminated composite seems impossible. Various flaws, such as microcracks,
inhomogeneities and cavities, can be introduced into the bond in the process of fabrication. During the service lifetime, the
structure will be subjected to various loads and exposed to corrosive environment. Consequently, these tiny flaws can get
significant and finally lead to the local failure of bond. On the other hand, interfacial properties can strongly influence the
behavior of the composites under thermal, mechanical and environmental conditions arising in service [2]. Thus, an ideal
robust health monitoring scheme should be found to identify interfacial defects at a very early stage and provide some
estimate of the extent or severity of the damage. However, due to the anisotropy of the material, the conductivity of the
fibers, the insulative properties of the matrix and the fact that much of the damage often occurs beneath the top surface of
the laminate, damage detection in composites is more difficult than in metallic structures [3].

Over the past decade, several techniques have been explored for detecting and monitoring of defects in composite
materials. Adams et al. [4] showed that any defect in fiber-reinforced plastics could be detected by reduction in natural
frequencies and increase in damping. Tan and Tong [5] detected a delamination in a laminated composite beam by
monitoring the sensor charge output distributions along the beam of the first three-order frequencies. Kisa [6] investigated
the effects of cracks on the dynamical characteristics of a cantilever composite beam. All of these investigations focus on
damage detection in composite structures at low frequencies. Park et al. [7] presented an overview of impedance-based
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health monitoring where the hardware and software issues are summarized, including a discussion of future research areas
and the path forward. It can be shown that any change in the mechanical impedance, which could be caused by the
presence of damage, will show up in the electrical impedance of the piezoelectric sensor. Although many investigations
[8–10] indicated that this electro-mechanical impedance (EMI) technique is highly sensitive to detect minor changes in
structural integrity using experimental measurement, due to the multiformity and complexity of the damage mechanisms
of composite structures, we cannot predict their evolution through measurement only [11]. Thus, appropriate tools of
simulation are necessary for monitoring system adapted to composite structures.

In order to establish an accurate EMI model for monitoring interfacial defects in composite beams, two important issues
including the proper bonding imperfection simulation and dynamic analysis of a composite beam should be considered
carefully. For a practical laminate, it is generally very difficult to predict the exact behavior of the interlaminar bonding
theoretically. Some simplified interfacial models thus have been introduced. The most popular one is the linear spring-like
model. For theoretical analysis, the interfacial tractions are continuous, while the displacements at either side of the
interface layer become discontinuous. Micromechanics analysis shows that the jump in displacement is linearly
proportional to the interfacial traction [12] and the proportional constants are the effective interface parameters
(spring-like constant) [13,14]. For the accurate evaluation of behavior of intelligent structures, although the famous
Pagano’s exact solutions of a laminate in cylindrical bending [15,16] have been extended to include the piezoelectric
coupling effect [17] and the interlaminar bonding imperfection [18,19], it should be pointed out that the exact elasticity
analysis becomes computationally expensive when the number of layers in the laminate increases, because of a large
number of integral constants that are involved. Note that the state-space method has been developed and proved to be
particularly effective in analyzing laminated structures [20,21]. In this method, no matter how many layers are involved,
the final solution scale remains the same and hence it is very powerful.

Surface bonded piezoelectric transducers are currently the most prominent area of research in damage detection using
EMI signatures [22,23]. However, due to the durability and protection from surface finish, breakage and the corrosive
environment, an embedded piezoelectric sensor and its interaction with the host composite structure have drawn much
attention in the field of structural health monitoring (SHM) [24,25]. Thus, in this paper, a composite beam with either
bonded or embedded piezoelectric layer is investigated based on the state-space formulations. A linear spring-like model is
adopted to describe the behavior of interfacial defects including the imperfect bonding between the host laminate and the
piezoelectric layer. Then, by virtue of the two-dimensional exact elasticity (piezoelasticity) equations and EMI model, an
analytical expression of electrical admittance (inverse of the electrical impedance) related to the dynamics of the
composite beam with imperfect interfaces is derived for SHM. Finally, numerical results are obtained and discussed to
show the validity of the present analysis.
2. State-space method

For the application of EMI technique to SHM of laminated structures, a layered orthotropic beam bonded or embedded
with a piezoelectric layer is considered, as shown in Fig. 1. For a beam structure, because the width is very thin and the load
along the width stays invariant, the problem can be regarded as a plane-stress problem. In this case, the nonzero stress
components are sx, sz and txz only, which are independent of y. In the piezoelectric layers, there are additionally two
nonzero electric displacement components Dx and Dz, which are also independent of y. Then we can derive the following
two-dimensional constitutive relations [26]:
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Fig. 1. Sketch of a composite beam with a piezoelectric layer.
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Dx ¼ ē15
qu

qz
þ
qw

qx

� �
� �̄11

qf
qx
; Dz ¼ ē31

qu
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þ ē33

qw

qz
� �̄33

qf
qz

, (1)

where u and w are the displacement components in x and z directions, respectively. f is the electric potential.
c̄ij, ēij and �̄ij are the reduced elastic, piezoelectric and dielectric constants, respectively, which are defined as
follows:

c̄11 ¼ c11 � c2
12=c22; c̄13 ¼ c13 � c12c23=c22; c̄33 ¼ c33 � c2

23=c22,

c̄55 ¼ c55; ē31 ¼ e31 � e32c12=c22; ē33 ¼ e33 � e32c23=c22,

ē15 ¼ e15; �̄11 ¼ �11; �̄33 ¼ �33 þ e2
32=c22. (2)

The equations of motion and Gaussian equation of electrostatics for the orthotropic piezoelectric layer are [26]

qsx
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þ
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qz
¼ r q
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qt2
;

qtxz

qx
þ
qsz

qz
¼ rq

2w

qt2
, (3)

and

qDx

qx
þ
qDz

qz
¼ 0. (4)

With a routine derivation, the following state equation can be obtained from Eqs. (1)–(4):
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in which

a ¼ c̄33�̄33 þ ē2
33; b1 ¼ ðc̄13�̄33 þ ē31ē33Þ=a; b2 ¼ ðc̄13ē33 � c̄33ē31Þ=a,

k1 ¼ c̄11 � c̄13b1 � ē31b2; k2 ¼ �̄11 þ ē2
15=c̄55; b ¼ c̄11 � c̄2

13=c̄33. (6)

The simply supported conditions are [26,27]

sxð0; zÞ ¼ sxðl; zÞ ¼ 0; wð0; zÞ ¼ wðl; zÞ ¼ 0; Dxð0; zÞ ¼ Dxðl; zÞ ¼ 0. (7)

To satisfy these conditions, we assume
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expðiotÞ, (8)

where z ¼ z=h and x ¼ x=l are dimensionless coordinates, the superscript ‘‘p’’ represents piezoelectric layer, a
quantity with overbar except c̄ð1Þ11 indicates the dimensionless one and m is an integer. The substitution of Eq. (8) into
Eq. (5) yields

q
qz

VðzÞ ¼ AVðzÞ, (9)

where

VðzÞ ¼ ½ūðzÞ s̄zðzÞ D̄zðzÞ t̄xzðzÞ w̄ðzÞ f̄ðzÞ�T (10)
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and
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In the above equations, we have employed the following notations: k ¼ mps, s ¼ h=l (the thickness-to-span ratio) and

O ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðpÞ=c̄ðpÞ11

q
is the dimensionless angular frequency. The state equation for the elastic layers can be derived in a

similar way and the corresponding state vector can be obtained by simply setting eij ¼ 0 in matrix A along with the

deletion of the third and sixth rows and columns. The solution to Eq. (9) can be obtained as

VðzÞ ¼ exp½Aðz� zk�1Þ�Vðzk�1Þ; ðzk�1 � z � zk; k ¼ 1;2; . . . ;nÞ, (12)

where z0 ¼ 0, zk ¼ zk=h ¼
Pk

j¼1hj=h and hk is the thickness of the kth layer.

Setting z ¼ zk in Eq. (12), the relationship between the state variables at the upper and lower surfaces of the kth layer
can be established

VðkÞ1 ¼MkVðkÞ0 , (13)

where VðkÞ1 and VðkÞ0 are the state vectors at the upper and lower surfaces, respectively, of the kth layer and
Mk ¼ exp½Aðzk � zk�1Þ� is the transfer matrix. Similarly, we get

Vðkþ1Þ
1 ¼Mkþ1Vðkþ1Þ

0 . (14)

In this paper, a spring-layer model is adopted to describe the interfacial imperfection [13,14]:

sðkþ1Þ
z ¼ sðkÞz ¼ ½w

ðkþ1Þ �wðkÞ�=RðkÞz ; tðkþ1Þ
xz ¼ tðkÞxz ¼ ½u

ðkþ1Þ � uðkÞ�=RðkÞx ; at z ¼ zk, (15)

where RðkÞx , RðkÞz are the compliance coefficients of the model. It is noted here that different values of compliance coefficients
can be assigned, corresponding to different cases of bonding imperfections. For example, for the slip-type imperfection, we

have RðkÞz ¼ 0 while keeping RðkÞx as finite constants.

By virtue of Eq. (8), Eq. (15) can be rewritten in a matrix form as

Vðkþ1Þ
e ðzkÞ ¼ PkVðkÞe ðzkÞ, (16)

in which VeðzÞ ¼ ½ūðzÞ s̄zðzÞ t̄xzðzÞ w̄ðzÞ�T is the elastic part of state vector VðzÞ and the subscript ‘‘e’’ means the transfer
relation between the elastic state variable and the interfacial transfer matrix is

Pk ¼

1 0 R̄
ðkÞ
x 0

0 1 0 0

0 0 1 0

0 �R̄
ðkÞ
z 0 1

2
66664

3
77775, (17)

where R̄
ðkÞ
x ¼ c̄ðpÞ11RðkÞx =h, R̄

ðkÞ
z ¼ c̄ðpÞ11RðkÞz =h are the dimensionless compliance coefficients in the spring-like model.

3. Electro-mechanical response of a composite beam with imperfect interfaces

3.1. A composite beam bonded with a surface piezoelectric layer

First, a composite beam bonded with a piezoelectric layer at the bottom surface is investigated. The relation
between the state vectors at the top and bottom surfaces of the host elastic laminate can be derived from Eqs. (13), (14)
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and (16),

VðnÞe ð1Þ ¼ TeVð1Þe ðz1Þ, (18)

where Te ¼
Q2

j¼nMðjÞe Pj�1 is the global transfer matrix for the elastic layers. The following mechanical and the electric
boundary conditions of laminated beam are assumed:

sðnÞz ¼ 0; tðnÞxz ¼ 0; at z ¼ 1,

sð1Þz ¼ 0; tð1Þxz ¼ 0; Dð1Þz ¼ 0; at z ¼ 0, (19-1)

and at the top surface of the piezoelectric actuator/sensor, we have

f ¼ f1 expðiotÞ; at z ¼ z1. (19-2)

The applied electric potential can be expanded as

f1 ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c̄ðpÞ11=�̄

ðpÞ
33

q X1
m¼1

f m sinðmpxÞ, (20)

where f m ¼ ½2=ðh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c̄ðpÞ11=�̄

ðpÞ
33

q
Þ�
R 1

0 f1 sinðmpxÞdx are the Fourier coefficients. Then, for an arbitrary integer m, the following
relation can be derived from Eqs. (13), (14) and (19):

Vð1Þe ðz1Þ ¼Mð1Þe Veð0Þ þ R, (21)

where

Mð1Þe ¼Mð1Þ0 �
1

m66
L1LT

2; R ¼
1

m66
f̄1L1,

L1 ¼ ½m16 m26 m46 m56�
T; L2 ¼ ½m61 m62 m64 m65�

T, (22)

where mij are the elements of matrix Mð1Þ; Mð1Þ0 is of order 4� 4 that can be obtained by simply deleting the third and sixth
rows as well as the third and sixth columns of Mð1Þ. To calculate the state variables at any interior point, we need the
following formulation:

f̄0 ¼ f̄ð0Þ ¼
1

m66
f̄1 �

1

m66
½m61ūð0Þ þm65w̄ð0Þ�. (23)

From Eqs. (18) and (21), we can get

VðnÞe ð1Þ ¼ TVeð0Þ þQ ; T ¼ TeMð1Þe ; Q ¼ TeR. (24)

By virtue of the mechanical boundary conditions in Eq. (19-1), we can get the following relation from Eq. (24):

T21 T24

T31 T34

" #
ūð0Þ

w̄ð0Þ

( )
¼

Q 21

Q 31

( )
, (25)

where Tij and Q ij are the corresponding elements of matrix T and the electrical load vector Q, respectively. After the
unknown state variables at the bottom surface are solved from Eqs. (25) and (23), the state vector at an arbitrary position
can be calculated from Eq. (12).

3.2. A composite beam embedded with a piezoelectric layer

Then, a composite beam embedded with a piezoelectric layer is taken into account. The following boundary conditions
at the top and bottom surfaces of laminated beam are assumed

sðnÞz ¼ 0; tðnÞxz ¼ 0; at z ¼ 1,

sð1Þz ¼ 0; tð1Þxz ¼ 0; at z ¼ 0. (26)

Further, we assume that the ith layer of the laminated beam is the piezoelectric layer. At the top and bottom surfaces of
the piezoelectric actuator/sensor, we have

DðiÞz ¼ 0; at z ¼ zi�1,

f ¼ f1 expðiotÞ; at z ¼ zi. (27)

Then, the following relation can be derived from Eqs. (13), (14) and (27):

VðiÞe ðziÞ ¼MðiÞe Veðzi�1Þ þ R, (28)
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where

MðiÞe ¼MðiÞ0 �
1

m66
L1LT

2; R ¼
1

m66
f̄1L1,

L1 ¼ ½m16 m26 m46 m56�
T; L2 ¼ ½m61 m62 m64 m65�

T, (29)

where mij are the elements of matrix MðiÞ; MðiÞ0 is of order 4� 4 that can be obtained by simply deleting the third and sixth
rows as well as the third and sixth columns of MðiÞ. To calculate the state variables at any interior point, we also need the
following formulation:

f̄0 ¼ f̄ðzi�1Þ ¼
1

m66
f̄1 �

1

m66
LT

2Veðzi�1Þ. (30)

Now the relation between the state vectors at the top and bottom surfaces of the elastic laminate can be derived from
Eqs. (13), (14), (16) and (28):

VðnÞe ð1Þ ¼ TVeð0Þ þ Q ; Q ¼ T1R, (31)

where T ¼ ð
Q2

j¼nMðjÞe Pj�1ÞM
ð1Þ
e is the global transfer matrix for the elastic variables and T1 ¼ ð

Qiþ1
j¼nMðjÞe Pj�1Þ. Similarly, we

have the following relation:

T21 T24

T31 T34

" #
ūð0Þ

w̄ð0Þ

( )
¼

Q 21

Q 31

( )
. (32)

It can be seen that all state variables including electric variables in the interior of the laminated beam (including
piezoelectric layer) can be calculated by the above analysis.

4. Electro-mechanical impedance technique

As shown in Fig. 2, the piezoelectric layer can be divided into L segments and each segment is regarded as an impedance
element. The L impedance elements are in parallel in the electric circuit and thus the electrical boundary conditions can be
given as [28]

V̄
ð1Þ
¼ V̄
ð2Þ
� � � ¼ V̄

ðL�1Þ
¼ V̄
ðLÞ
¼ V̄ ; Ī ¼ Ī

ð1Þ
þ Ī
ð2Þ
þ � � � þ Ī

ðL�1Þ
þ Ī
ðLÞ

, (33)

in which a quantity with overbar indicates the dimensionless one. For an arbitrary impedance element j, the dimensionless
electric current passing through the piezoelectric layer Ī

ðjÞ
can be determined as [23]

Ī
ðjÞ
¼ iO

W
s

Z 1

0

Z xj

xj�1

D̄z dxdZ, (34)

in which W ¼ b=h, s ¼ h=l, Z ¼ y=b, b is the width of composite beam. Because the composite beam is very narrow and the
electric displacement along the width is considered invariant, we have

Ī
ðjÞ
¼ iO

W
s

Z xj

xj�1

D̄z dx. (35)

Substitution Eq. (35) into Eq. (33) yields

Ī ¼ iO
W
s

Z x1

0
D̄z dxþ iO

W
s

Z x2

x1

D̄z dxþ � � � þ iO
W
s

Z 1

xL�1

D̄z dx ¼ iO
W
s

Z 1

0
D̄z dx. (36)

The electric displacement of the top surface of the piezoelectric layer D̄Z can be obtained from the analysis presented in
the previous sections. In the paper, the equipotential surfaces are always assumed at the two sides of the piezoelectric
layer. Thus, the dimensionless electric voltage should be

V̄ ¼ f̄1 � f̄0, (37)
………… 

lj

LL-1j 2 1

Fig. 2. Divided segments for the piezoelectric layer.
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where f̄1 is the driven electric potential and f̄0 can be derived from Eqs. (23) and (30) for two different cases, respectively.
Finally, the admittance of the structural system can be expressed by

Ȳ ¼
Ī

V̄
¼

iOW
R 1

0 D̄z dx
ðf̄1 � f̄0Þs

. (38)

Obviously, the dimensionless admittance Ȳ contains the information of the interfacial properties and other structural
system parameters.

5. Numerical simulations

A three-layered elastic laminate bonded with a piezoelectric layer at the bottom surface of the composite beam is
considered. The material properties of the piezoelectric layer and elastic layer [29] are listed in Tables 1 and 2, respectively.
The thickness ratio between the four layers is 0.1:0.3:0.3:0.3 (from the bottom layer to the top layer). The width-to-
thickness ratio W is 0.2. In addition, the mechanical and dielectric loss factors are taken to be 0.03 and 0.0185 for EM
admittance calculation, respectively. In all examples to be considered, we assume RðkÞz ¼ 0 to avoid the material penetration
phenomenon [30] and take R̄

ðkÞ
x ¼ RðkÞ for simplicity. The following non-dimensional quantities are then introduced:

f0 ¼
f
h

ffiffiffiffiffiffiffiffi
�̄ð1Þ33

c̄ð1Þ11

vuut ; Y0 ¼
Y

o�̄ð1Þ33 h
, (39)

where Y0 ¼ G0 þ B0i and G0 and B0 are the real and imaginary parts of the electric admittance, respectively.
To validate EMI model presented here, numerical results are compared with theoretical predications. If the free

vibration problem is taken into account, the electrical load is usually assumed to be zero. In this case, the right-hand side of
Eq. (25) or Eq. (32) vanishes and the existence of nontrivial solution demands

T21 T24

T31 T34

�����
����� ¼ 0, (40)

which gives the frequency equation. The lowest natural frequency parameters O ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðpÞ=c̄ðpÞ11

q
of the simply supported

laminate for various thickness-to-length ratios and the dimensionless compliance coefficients Rð2Þ are listed in Table 3. In

this case, the interface at z ¼ 0:4 is assumed to be imperfect while the ones at z ¼ 0:1 and 0.7 are perfect.
Then, a uniform electrical load with f̄1 ¼ 1 is assumed to be applied on the top surface of the piezoelectric layer. The EM

conductance G0 (the real part of the admittance) signatures obtained by the present EMI method for the same case are
Table 1
Material properties of PZT-4 (transversely isotropic) [29].

Density (kg/m3) r ¼ 7500

Elastic constants (�1010 N/m2) c11 ¼ 13:9, c12 ¼ 7:8, c13 ¼ 1:4, c33 ¼ 33:64, c44 ¼ 16:25

Piezoelectric constants (C/m2) e15 ¼ 12:7, e31 ¼ �5:2, e15 ¼ 15:1

Dielectric constants (�10�11 F/m) �11 ¼ 650, �33 ¼ 560

Table 2
Material properties of an orthotropic elastic material [29].

Density ðkg=m3Þ r ¼ 5000

Elastic constants (�1010 N/m2) c11 ¼ 5:8, c12 ¼ �5:4, c13 ¼ 2:3, c22 ¼ 11, c23 ¼ 1:3, c33 ¼ 5:2, c44 ¼ 1:89, c55 ¼ 1, c66 ¼ 3:2

Table 3

Lowest natural frequency parameter O ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðpÞ=c̄ðpÞ11

q
of a simply supported laminate.

h/l Rð2Þ ¼ 0 Rð2Þ ¼ 0:5 Rð2Þ ¼ 1 Rð2Þ ¼ 1:5

0.10 0.018324409 0.018304621 0.018285073 0.018265504

0.15 0.040439534 0.040346866 0.040255051 0.040163975

0.20 0.070086952 0.069820633 0.069558231 0.069299582

0.25 0.106246387 0.105664717 0.105095164 0.104537332

0.30 0.147898045 0.146831214 0.145793472 0.144783699
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Fig. 3. EM admittance signatures for a laminate in the low frequency range: (a) h=l ¼ 0:1; (b) h=l ¼ 0:15; (c) h=l ¼ 0:2; (d) h=l ¼ 0:25; and (e) h=l ¼ 0:3.
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depicted in Fig. 3. It is shown that the lowest natural frequencies extracted from the EM signatures differ slightly from the
numerical results obtained by the frequency equation. For example, in the case of Rð2Þ ¼ 1 and h=l ¼ 0:25, the error between
the numerical results obtained by the two different methods is less than 0.148 percent. Furthermore, as we can see from
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Table 3, the more serious the interfacial damage is, the lower the natural frequency will be. That is due to the reduction of
the overall stiffness of the laminated beam. The similar trend can also be observed from Fig. 3.

In the following analysis, the thickness-to-length ratio h=l ¼ 0:1 is always assumed. As a primary assumption of the
present EMI model, the electrode surfaces of the two sides of the piezoelectric transducer are considered to be
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equipotential. To check this assumption, the distribution of electric potential along the beam length under a uniform
electrical load with f̄1 ¼ 1 is displayed in Fig. 4. It is shown that a good precision can be obtained when integer m ¼ 101.
Also, we can see that the electric potential is almost uniform along the beam length.

The effect of imperfect bonding between the elastic layers on the electric admittance is studied in the higher frequency
range. The frequency parameters O ¼ 223:5 correspond to frequency range 11.35–19.86 kHz, which locates in the typical
working frequency range in the EMI technique [31]. Fig. 5(a) shows that the resonant peaks shift towards the left with the
increasing compliance coefficient Rð2Þ due to reduction of global stiffness of the composite beam. However, the imaginary
part of the admittance seems insensitive to the interfacial defects as shown in Fig. 5(b). The similar observation has been
reported in Ref. [23] for a carbon/epoxy laminate bonded with a piezoelectric patch. To quantify changes in the EM
admittance signatures, a non-parametric index called covariance, which evaluates the averaged product of deviations of
admittance signature data points from their respective means, will be adopted herein. Mathematically, it is defined as [32]

Cov ¼
1

N

XN
i¼1

ðxi � x̄Þðyi � ȳÞ, (41)
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where x̄ and ȳ are the mean values of two sets of admittance signatures. The more serious the interfacial defect is, the larger
deviation between EM admittance signatures appears. This will result in the fact that the covariance index is closer to zero
or is negative [32]. As shown in Fig. 6, the covariance values tend closer to zero with aggravating interfacial defects.
Although the covariance change is not significant comparing with that obtained in the case of imperfect bonding at z ¼ 0:4,
a similar trend can also be observed from Figs. 7 and 8 for the case of z ¼ 0:7. It can be seen from Fig. 9 that the bonding
condition of the sensor/actuator layer also has a significant influence on the output EM signals. Thus, in further research
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and future application of EMI technique, imperfect interfaces between piezoelectric layer and host structures should be
taken into account carefully.

A laminated beam composed of an embedded piezoelectric layer (the third layer of the composite) and four identical
elastic layers is also investigated. The material properties of the piezoelectric layer and elastic layers including the
mechanical and dielectric loss factors are the same as in the first example. The thickness ratio between the five layers is
0:225 : 0:225 : 0:1 : 0:225 : 0:225. The thickness-to-length ratio and the width-to-thickness ratio are 0.1 and 0.2,
respectively. A uniform electrical load with f̄1 ¼ 1 is applied on the top surface of the piezoelectric layer. From Fig. 10,
we can see that the resonant peaks of EM signatures extracted from the embedded piezoelectric layer shift towards the left
evidently with aggravating interfacial defects. The covariance index of the impedance signature data indicates a similar
phenomenon, as shown in Fig. 11. Furthermore, the effect of imperfect bonding between the piezoelectric transducer and
the elastic layer on EM admittance signatures is also displayed in Fig. 12 clearly.
6. Conclusions

This paper considers a surface bonded (and embedded) piezoelectric layer and its interaction with the host laminated
beam as a practical model of EMI for composite beams. A spring-layer model is employed to describe the bonding
imperfection and an exact analysis based on the state-space formulation is developed. An analytical expression of the
electric admittance including the information of the interfacial defects is derived. Comparison with the established
method, which employs the frequency equation, validates precision and feasibility of the present analysis.

Numerical results also show that the global stiffness of the composite beam reduces evidently due to the interfacial
bonding and the proposed technique can detect the interfacial defects conveniently through monitoring the electro-
mechanical admittance signatures. Moreover, it is also shown that the bonding properties of the actuator/sensor layer have
great influence on the output electric signal. Thus, attention must be paid to the bonding condition between the
piezoelectric layer and the host structure in the field of structural health monitoring using EMI signatures.

In conclusion, the present analysis provides an efficient and convenient technique for investigating the dynamic
response of intelligent structure systems in theory. Further, it also provides a powerful, precise and convenient tool to
identify the interfacial defects of composite structures quantitatively in practice.
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